A Review of Spatial Networks Insights and Methods in the Context of Planning: Applications, Challenges, and Opportunities

> Xiaofan Liang xiaofan.l@gatech.edu Friendly Cities Lab, School of City and Regional Planning, Georgia Institute of Technology Yuhao Kang yuhao.kang@wisc.edu GeoDS Lab, Department of Geography, University of Wisconsin-Madison

Outline

Why should planning cares about spatial networks?

Four Areas of Applications

- Revealing Spatial Structure
- Optimization of Urban Infrastructure
- Indicators of Economic Wealth, Social Capital, and Residential Mobility
- Public Health Control

Four Areas of Challenges and Opportunities

- Data Openness and Privacy
- Direct Policy Implications
- Civic and Participatory Engagement
- Interface with GIS

A Vision of Spatial Networks in Collaborative Planning

Why should planning cares about spatial networks?

A vision of city based on "networks and flows"

"Collaborative planning theorists treat networks as the mechanism to empower the stakeholders to build consensus (Innes and Booher 1999), while rationalists (Batty 2013) see networks as the mechanism to model and explain urban growth and morphology."

A planning process that respects organic organizations and emergence from interconnected individuals and infrastructure

"Tools that support this vision of cities come from a wide range of disciplines (e.g., agent-based models, social network analysis), most of which rely on individuals to interact and effect changes on collective phenomenon."

What is a spatial network?

"We define a spatial network as a graph structure in which nodes can be geolocated"

Planar Networks: Edges are Spatially-embedded (Roads, Trajectories, etc.) Non-Planar Networks: Edges are NOT Spatiallyembedded

Mixed:

Not exactly embedded but follow geographic constraints

Applications Revealing Spatial Structure

Research Questions:

How social and economic relationships intersect with space

Research Methods:

Apply GIS and network visualization to contrast spatial and social patterns or construct statistical indices to measure the effect of interests.

High crime rate is associated with neighborhood isolation

Graif C, Lungeanu A, Yetter AM (2017) Neighborhood isolation in Chicago: violent crime effects on structural isolation and homophily in inter-neighborhood commuting networks. Soc Netw 51:40–59

Applications Revealing Spatial Structure

Research Questions:

What is the hierarchy in the network? Which node is more influential?

Research Methods:

Network metrics (e.g., centrality); High degree centrality: influence and vibrancy High closeness centrality: accessibility High betweenness centrality: low resilience Hubs and spokes;

Single-linkage analysis;

Rich-hub coefficients

Color-coded maps representing the spatial distributions of node centrality in Venice Roads

Crucitti P, Latora V, Porta S (2006) Centrality measures in spatial networks of urban streets. Phys Rev E 73(3):36125

Applications Revealing Spatial Structure

Research Questions:

Where do spatial networks naturally cluster? What are the types of social/commuting/physical connectivity patterns?

Research Methods:

Graph Partitioning Algorithm Hierarchical Clustering Algorithm Modularity Optimization Algorithm

Prestby T, App J, Kang Y, Gao S (2020) Understanding neighborhood isolation through spatial interaction network analysis using location big data. Environ Plan A: Econ Space. https://doi.org/ 10.1177/0308518X19891911

Applications Optimization of Urban Infrastructure

Research Questions:

What is the most efficient network path to cover the problem area?

How to improve traffic and human flows with minimum network changes?

Research Methods:

Travel demand models based on spatial network flows. Network topology. This interactive interface shows which road to extend in a slum in Cape Town to optimize accessibility based on a network topology method

Cape Town Project

Cape Town, South Africa

This map shows a block in Khayelitsha, a township in Capetown, South Africa. These parcels were identified from March 2009 aerial photography, in conjunction with a data collection exercise by SDI South African Alliance and the Santa Fe Institute. In this map, black lines show new roads and paths, orange outlines parcels with no direct access to roads or paths. Parcels with street access are outlined in grey.

0m of paths 22,513m² of parcels 0.00% of area needed for paths 390 isolated parcels

Step Selector

Brelsford C, Martin T, Hand J, Bettencourt LMA (2018) Toward cities without slums: topology and the spatial evolution of neighborhoods. Sci Adv 4(8):4644

http://openreblock.org/

Applications Indicators of Economic Wealth, Social Capital, Residential Mobility

Research Question:

How are individuals pr places' network patterns correlate with their economic wealth, social capital, and ability to relocate?

Research Methods:

Correlation

Causal Models

Statistical Analyses

San Francisco has more connections to farther and wealthier places than Bakersfield (Kern County)

A: Relative Probability of Friendship Link to San Francisco County, CA

B: Relative Probability of Friendship Link to Kern County, CA

Bailey M, Cao R, Kuchler T, Stroebel J, Wong A (2018) Social connectedness: measurement, determinants, and effects. J Econ Perspect 32(3):259–280

Applications *Public Health Control (COVID-19)*

Research Question:

How can spatial networks inform public health crisis?

Research Methods:

Track disease transmission through spatial networks

Augment epidemiology models with spatial networks

Re-interpret POI flow characteristics as transmission risks

Comparing mobility pattern before and after U.S. stay-at-home order for COVID-19

Kang Y, Gao S, Liang Y, Li M, Rao J, Kruse J (2020) Multiscale dynamic human mobility flow 620 dataset in the us during the covid-19 epidemic. ArXiv Preprint https://arxiv.org/abs/2008.12238

Challenges Data Openness and Privacy

Private Data:

Cellphone calls; micro-mobility traces; social media, etc.

Collaborative/Crowdsourced Data:

OpenStreetMap; surveys; collaboration with public institutions

Public Data:

Tax records, commute data, street shapefiles, bus routes, and smart cards

The data source of the papers we reviewed for applications

	Private Big Data	Collaborative/ Crowdsourced Data	Public Data
Physical Networks	3	3	10
Mobility Networks	29	1	8
Social Networks	1	2	0
Sum	33	6	18

Number represents the count of papers

Opportunities

Data openness through policy making

Starting in 2018, all ride-share companies are required by an ordinance to send routine reports to the City of Chicago, including the origins and destinations of trips.

The City of Chicago uses the TNP data requested under the ordinance to assess the impact of TNP services at congestions.

Map 2. Downtown Area that Experiences the Highest Density of TNP Congestion, March 2018-February 2019

Report: Transportation network providers and congestion in the city of Chicago. Retrieved from: https://www.chicago.gov/content/dam/city/depts/bacp/Outreach%20and%20Education/MLL_10-18-19_PR-TNP_Congestion_Report.pdf

Challenges Data Openness and Privacy

Geoprivacy

Spatial Networks (esp. trajectory) can include private/confidential information

The task of ensuring the privacy is often offloaded to the service vendors.

Public data only reports on tract, county, or state level, which is not enough for planners' place-based work.

Opportunities

Geoprivacy Technique Innovation

Aggregate fine-resolution data to upper-level scales

Grouping and mixing geographic data (Gruteser and Grunwald, 2003)

Geomasking (Gao et al. 2019)

Deep learning to generate privacypreserving synthetic trajectory (Rao et al. 2020)

Challenges Direct Policy Implications

Lack of Direct Policy Implications

Interesting insights, but not a step further to support policy decisions and normative discussions.

"If we have spatial segregation in people's activity space, should we respect such structure or optimize it to a healthier balance?

If we know a city is at the margin of the urban hierarchy, how can we help the city move up the ladder or should we intervene at all?" Evaluate the impact of network changes (i.e., high-speed rail network) on city-tocity travel time and air traffic distribution (Cao et al, 2013; Liu et al, 2019)

Opportunities

Use geo-industry and labor flow network to direct local economic policy development (Park et al, 2019)

Contextualize spatial networks insight in the socio-political history of a locale (Shelton, 2019)

Challenges & Participation and Collaboration

Data/Perspective Representation

Big spatial networks data may not represent every population.

Duality of Network Nodes and Edges

A network node may serve the region but not the immediate neighborhood (e.g., airports; ports)

If the edges (e.g., highway) are not accessible, they can be harmful too.

Opportunities

Alternative Spatial Network data to support activism and NGOs

Researchers mapped out the mentorship pairs with the NGO Big Brothers and Big Sisters to evaluate if the program bridges the ties across spatial and social groups

Andris C, Liu X, Mitchell J, O'Dwyer J, Van Cleve J (2019) Threads across the urban fabric: youth mentorship relationships as neighborhood bridges. J Urban Aff 1–16

Challenges Interface with GIS

Node and Edge Clutter

Lack of GIS Infrastructure to support Network data and viz

See a review at Andris et al. 2018

Andris C, Liu X, Ferreira J Jr (2018) Challenges for social flows. Comput Environ Urban Syst 70:197–207

&

Opportunities

Edge Bundling Alluvial Diagram Web-based interactive tool

https://flowmap.blue/

Envisioning a Collaborative Planning Model with Spatial Networks

Additional Reference

Shelton T, Poorthuis A (2019) The nature of neighborhoods: using big data to rethink the geographies 705 of Atlanta's neighborhood planning unit system. Ann Am Assoc Geogr 109(5):1341–1361

Gruteser M, Grunwald D (2003) Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st international conference on mobile systems, applications and services, pp 31–42

Gao S, Rao J, Liu X, Kang Y, Huang Q, App J (2019) Exploring the effectiveness of geomasking techniques for protecting the geoprivacy of Twitter users. J Spat Inform Sci 19:105–129. https:// 569 doi.org/10.5311/JOSIS.2019.19.510

Rao J, Gao S, Kang Y, Huang Q (2020) LSTM-TrajGAN: a deep learning approach to trajectory privacy protection. ArXiv Preprint https://arxiv.org/pdf/2006.10521

Cao J, Liu XC, Wang Y, Li Q (2013) Accessibility impacts of China's high-speed rail network. J Trans Geogr 28:12-21

Park J, Wood IB, Jing E, Nematzadeh A, Ghosh S, Conover MD, Ahn YY (2019) Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters. Nat 670 Commun 10(1):1–10.

Metrorail System Map, Washington DC, MD, VA. Retrieved from: <u>http://www.dctransitguide.com/m/MetroMap/</u>

Butler, P. (2010). A map of friendships. Retrieved from: <u>https://www.economist.com/graphic-detail/2010/12/15/a-map-of-friendships</u>