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Abstract With the rise of geospatial big data, new narratives of cities based on spatial
networks and flows have replaced the traditional focus on locations. While plenty of
research that have empirically analyzed network structures, there lacks a state-of-the-
art synthesis of applicable insights and methods of spatial networks in the planning
context. In this chapter,we reviewed the theories, concepts,methods, and applications
of spatial network analysis in cities and their insights for planners from four areas
of concerns: spatial structures, urban infrastructure optimizations, indications of
economic wealth, social capital, and residential mobility, and public health control
(especially COVID-19). We also outlined four challenges that planners face when
taking the planning knowledge from spatial networks to actions: data openness and
privacy, linkage to direct policy implications, lack of civic engagement, and the
difficulty to visualize and integrate with GIS. Finally, we envisioned how spatial
networks can be integrated into a collaborative planning framework.
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1 Introduction

Theworldwe live in today is increasingly connected in physical, social, and economic
ties.Our society has evolved into a "NetworkSociety", a characterization fromCastell
[1], as being more decentralized, open, and organized as "a space of flows". These
connections, which often congregate in large cities, are the keys to unlock economic
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agglomeration, innovations, and productivity beyond population growth and limited
resources [2]. Therefore, urban planning as a discipline that makes future-oriented
decisions for cities should grapple with this new social structure and its implications
on human activities and urban forms.

Yet, planning theories and tools to address cities as systems of network and
flows have just started to be integrated at the cross of the century [3, 4]. This
perspective of cities come from complexity science theory, which has been embraced
in both collaborative (and communicative) planning theories [5, 6, 7] and a positivist
approach to “the science of cities” [4, 2]. Collaborative planning theorists treat
networks as themechanism to empower the stakeholders to build consensus [8], while
rationalists [4] see networks as the mechanism to model and explain urban growth
and morphology. Tools that support this vision of cities come from a wide range of
disciplines (e.g., agent-basedmodels, social network analysis), most of which rely on
individuals to interact and effect changes on collective phenomenon. Though critics
argue that the technoscientific urbanism thinking embedded in the analytical and
modeling approaches over-emphasizes technology’s role at solving urban problems
[9, 10], attentions to networks and flows as the background knowledge for planning
keep rising, especially for planning smart cities [11]. Metrics derived from network
measures such as vulnerability, reliability, and accessibility have also become the
new normative goals for planning [12]. Under this context, spatial network analysis
can be both interpreted as a tool to materialize a vision of city based on connectivity
and a planning process that respects organic organizations and emergence from
interconnected individuals and infrastructure.

Spatial networks (and network analysis) is a "fuzzy concept" [13, p.223] that lacks
clear disciplinary boundaries. Its development has diverging roots in the field of net-
work science (i.e., graph theory), social science (i.e., social network analysis), and
geography (i.e., relational geography). Studies from network science perspectives
tend to elaborate on the mathematical and formal elements of networks [22]. Social
network analysis (SNA), originated from Sociology, has a long tradition focusing
on how network structures inform power dynamics, group identity, and social rela-
tions [15]. While network science and SNA may not explicitly engage with agents’
spatial locations, relational geography theories affirm that human relationships are
spatially embedded in a global system of economic activities and institutional prac-
tices [16, 17]. Agents can reap the benefits of innovation, knowledge diffusion, and
collaborations across geography or exert influence at a distance through their connec-
tions [18]. However, these virtual interactions are still not free from the constraints
of geography [19].

Here, we define a spatial network as a graph structure in which nodes can be
geolocated [20]. Spatial networks have two common types —— planar and non-
planar networks —— and they are differentiated by edges’ spatial attributes. In
a planar network, both vertices and edges are geographically embedded [20]. No
edges will cross each other, and each intersection is a node, such as those in the
road networks and electrical grid networks. A non-planar network has edges that
overlap with each other without creating new nodes at the crossing [20]. These
edges can represent non-spatial connections, such as social media friendship and
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telecommunications. Some networks can stand in between the two typologies, as
their edges are somewhat constrained by geography but not completely embedded,
such as flight routes and mobility patterns [20]. The separation of planar and non-
planar networks has implications on network statistics (e.g., degree distribution), as
outlined in Haggett and Chorley’s early classic Network Analysis in Geography [21]
and later summarized in [22].

In this chapter, we contributed to the existing literature by associating and con-
textualizing the insights from spatial networks literature to planning concerns and
described the challenges and opportunities to integrate spatial network analysis into
planning practices. The following sections are divided into three parts. First, we
divided the literature based on themes and reviewed the methods and insights from
empirical studies (with a focus on the 2010-2020 period) that applied spatial net-
work analysis to study urban dynamics. Second, we outlined four challenges of
spatial network analysis revealed by the current work along with potential solutions.
We concluded the paper with a vision framework for spatial networks to empower
collaborative planning and examples to integrate spatial networks for different ur-
ban stakeholders. We focused our reviews on spatial networks that engage human
activities.

2 A Review of Spatial Networks Literature for Planning
Knowledge

The literature selected in the review represent a major line of research theme in
spatial networks and was applied to increase planning knowledge. We consolidated
the contents into four subsections based on their research goals.

2.1 Revealing Spatial Structures

Spatial network analysis has been used to reveal inter-city and intra-city spatial struc-
tures. Theword "structure" is often referenced vaguely in the literature. Therefore, we
divided the interpretations of structure into three kinds —— relationship, hierarchy,
and cluster —— based on the research questions and the methods in the literature
we reviewed. Many touched on more than one interpretation in the analysis.

Literature focusing on revealing the relational structure tend to ask how social and
economic relationships and processes intersect with space. Thus, methods applied
in this line of work rely on GIS and network visualizations heavily to contrast the
spatial and social patterns or construct statistical indices to measure the effect of
interests. For example, Graif [23] explained crime through neighborhood effect,
a network of neighborhoods connected through gang members’ daily commutes
and social ties, rather than isolated incidents. People also form their own "gang
turf" by consistently visiting certain places in cities for consumption or activities.
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Geographers and sociologists also refer to this spatial pattern prescribed by people’s
mobility traces and social media check-in data as the activity space. People or
neighborhoods with various demographic labels can have distinct activity space
patterns that reinforce social [24] and spatial segregation [25, 26]. The extent of
segregation can be measured through the reciprocity and directions of mobility
flows [27] or the overlap of demographic attributes [28].

When connections in spatial networks indicate more than just relationships, the
network nodes start to embody influence and power. As a result, hierarchies arise
as some nodes become more "central" or "influential". These characteristics can be
measured through the distribution of networkmetrics (e.g., centrality) and the roles of
nodes (e.g., hubs and spoke) at different levels. The threemost widely applied central-
ity measures are degree centrality, closeness centrality, and betweenness centrality
[29]. High degree centrality implies influence and vibrancy, as the node attracts a
large amount of connections. High closeness centrality indicates accessibility, as the
node can reach all other nodes in a few hops. High betweenness centrality represents
low resilience, as the traversal of shortest paths from other nodes has to pass through
a few nodes. These indices have been used as benchmarks to compare and group
cities with similar characteristics in the urban context. For example, Taylor [30] ’s
world city network literature ranked cities by the number of offices from global firms
(weighted by offices’ importance) and foundNewYork and London as the alpha cities
in the world. Crucitti [31], on the other hand, used the centrality measures of urban
street networks to distinguish self-organized and planned cities. Transportation liter-
ature also leveraged these indicators to assess urban infrastructure and predict traffic
flows. For instance, Guimera [32] observed scale-free small-world characteristics in
the flight network through degree distribution of airports, which means that people
can reach any airport within a few layovers. Derrible [33] measured betweenness
centrality of twenty-eight metro systems and found that the system becomes more
resilient (i.e., more distributed betweenness centrality) when the number of stations
increases. Though betweenness centrality is a prominent measure to predict traffic
flows, its efficacy is debatable [34]. Also, a node with high centrality in one measure
may not be high in another, which gives different roles to the nodes [35, 36]. Other
than centrality measures, various network typologies and statistics are devised to
capture the core-periphery structure in spatial networks, such as hubs and spokes
[37], single-allocation networks [38] (or single-linkage analysis [39]), and rich-hub
coefficients [40, 41].

When hierarchy is established, a natural next step is to cluster cities (or other
nodes) to find communities in the networks. Questions asked in this type of work
concern classifying various spatial units and visualizing enclaves that may not be
spatially contiguous but deeply connected. Fortunato [42] summarized a series of
community detection algorithms that can be applied to delineate areas in a network
into fine-grained, non-overlapping regions. The key idea behind community detec-
tion is to separate nodes into distinct groups to minimize the within-group difference.
One class of algorithms relies on traditional graph partitioning methods to either
divisively remove edges that bridge between groups (e.g., Louvain method) or ad-
ditively combine groups with similar characteristics (e.g., hierarchical clustering)
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[42]. The other class is based on optimizing modularity (i.e., quality of network
partition), such as Fastgreedy [43], Spinglass [44], Walktrap [45], and Infomap [46].
Eachmethod has its own strength given network size, edge directions, running speed,
and efficacy [47]. These methods can be implemented in R and Python packages or
network software like Gephi. In terms of applications, Ratti [48] adopted a spectral
clustering algorithm (a way to optimize modularity) to "redraw" the boundaries of
Great Britain based on cellphone interaction network data. Follow-up studies ex-
panded the application to France, UK, Italy, Belgium, Portugal, Saudi Arabia, Ivory
Coast, China, and Singapore [54, 55, 56]. The same approach was also applied on
the neighborhood level to reveal intra-city dynamics [52, 53]. The generated borders
tend to conform with administrative boundaries on the regional and national level,
while less on the neighborhood level, with emerging urban centers featured by peo-
ple’s telecommunications and daily commutes [54, 55, 56]. One limitation of the
modularity-based community detection method is that it only clusters based on the
edges’ origins and destinations and thus can be subjective to the modifiable areal
unit problem (MAUP) and edge effects. More recent work uses linear units, such as
GPS trajectories and streets, as the new focus for clustering [57, 58]. Boeing [59]’s
OSMnx package significantly lowered the difficulty to analyze street networks by
automating the data download, processing, visualization, and analysis with Open-
StreetMaps. An example of the applications on the urban spatial order used this
package to examine street networks’ orientation, configuration, and entropy to group
and compare cities with different urban forms [60].

2.2 Optimization of Urban Infrastructure

We wanted to feature a particular line of application that focused on planar net-
works and optimizationmethods. The research questions relevant to planning revolve
around network traversals (e.g., most efficient network path to cover the problem
area) and topology change (e.g., improve traffic and human flows with minimum
road network changes).

In transit planning, the network design of public transit is often framed as a
bi-level optimization problem. Planners who wish to build the most efficient transit
networks (first level optimization) must first resolve the users’ demand to travel
most efficiently (second level optimization). Spatial networks of human mobility can
inform planners of user demands for transit and the current traffic bottlenecks. The
transit routes can also be framed as spatial networks to be optimized for structural
efficiency. For example, with GPS embedded into the bicycles and biking docks, the
O-D flows, and user trajectories were collected to indicate demands and connectivity
at various stops and thus optimize the locations of biking docks and construction of
bike lanes [61, 62, 63, 64]. Other applications include reducing bus stop redundancy
[65], evaluating operation efficiency in bus network [66], and designing spatial
allocations of logistic centers [67]. The application of spatial networks on topology
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change is still developing. Brelsford [68] demonstrated how to generate alternative
street network topology, which may improve urban slums’ conditions.

2.3 Indicators of Economic Wealth, Social Capital, and Residential
Mobility

Studies about the spatial structure or urban infrastructure tend to treat spatial network
edges as homogeneous and assume they come from a single source. In fact, density,
the types of edges, and the attributes of those they connected to all impact individuals
or neighborhoods’ social and economic health.

The foundation piece by Eagle [69] was the first of its kind to study the economic
impacts of the network structure empirically. His finding indicated that neighbor-
hoods’ diversity of communication connections is strongly associated with their
economic development. Evidence from highway transportation networks [70] also
confirmed this positive association. Spatial networks can also inform an individual’s
(or a neighborhood’s) levels of social capital based on the possession of far-reaching
or local ties. For instance, Facebook friendship data told us that counties with fewer
percentage of friends within 100 miles (e.g., San Francisco) are more likely to have
higher social capital, social mobility, average income, and education levels [71]. On
the individual level, these social supports can be maintained in sparse and transitive
networks and is unaffected by residential moves [72], though the effect may be me-
diated by income or race. On the neighborhood level, social capital can be measured
by the diversity and serendipity of visits, which formed the social diversity index
formula in Hristova [73]’s paper.

The entanglement between race, income, and interpersonal network can also influ-
ence people’s residential mobility and neighborhood mobilizations [26]. Conversely,
the opportunity to grow and maintain a social network is partially contingent on the
locations of the individual and ties. As Van Eijk [74] found out, poor people were
more likely to have local ties. Living in a mixed (income or race) neighborhood did
not necessarily bring rich connections due to the lack of interactions with resourceful
neighbors. They were also more likely to form close-knit, kin-based social networks
with geographic proximity, inhibiting information transmission and mobilizations
for changes. Therefore, the destruction of low-income living communities is both
"convenient" due to the lack of organized resistance, as evident in stories of 1960s
urban renewals [75], and detrimental as it tears down locally-maintained social cap-
ital. The lack of ties outside of the poor’s living communities may also explain why
they were the last to evacuate (or not evacuate) their homes from natural disasters
because of the difficulty to relocate [76].
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2.4 Public Health Control

The Healthy Cities Movement started 40 years ago has grown planners’ attention
to managing public health in urban space. The outbreak of the COVID-19 global
pandemic has posited a unique context for applying spatial network analysis for
public health control and measuring the effect of policies that constrains human
mobility.

The spatial structures and urban hierarchies embedded in spatial networks gen-
erate natural pathways for the contact-based disease to spread. Performing spatial
network analysis helps governments and urban planners evaluate populations at
risks, capture epidemiology-relevant behaviors, measure the effects of policies, and
assist decision-making such as emergency response, medical resources evaluation
and allocation, etc [77, 78]. Research has postulated that highly connected cities may
be the first to be infected. Thus spatial networks can be useful at tracking disease
transmission and expecting populations at risk, as found in road [79], migration [80],
and travel networks [81]. Several human mobility portals and datasets were created
to support the spatial network visualization of the transmission pathways and human
response to policies [82, 83, 84, 101]. Researchers have investigated how different
lockdown strategies and intervention scenarios (e.g., social distancing) affect the
spread of the disease and economic conditions by constructing human mobility flow
networks in various countries including China [86], Italy [87, 88], France [89], UK
[90], and U.S. [91].

The availability of spatial networks (e.g., mobility) data on the local level also
enabled place-based epidemic modeling. Models that integrated spatial network
structure and data (e.g., business foot traffic) were more successful at explaining the
spatial heterogeneity in epidemic transmission across different regions and neigh-
borhoods [92, 93, 94]. All these studies demonstrate the potential for spatial network
structure to understand human behaviors in response to the disease and suggest the
importance of incorporating spatial networks to inform health care planning.

In addition to policy evaluation, the COVID-19 public health crisis also recon-
textualized the flow characteristics associated with POIs (Point of Interests). As
suggested by existing studies, mining POI characteristics and urban functions, such
as the density of visits, the socioeconomic diversity of customers, and the types of
interactions in place, are essential for urban planning [95, 96, 97, 98]. In the con-
text of COVID-19, these characteristics are re-interpreted as transmission risks. For
example, Benzell [99] incorporated the number of visits (and unique visits), time
spent, and median distance traveled to different POIs to calculate transmission risk
and ration what kind of places should be closed or reopen first. Knowing how POI
characteristics may impact public health control, urban designers in the future may
look into design solutions that address this challenge in advance.
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3 Challenges and Opportunities

The application of spatial network analysis in the planning context did not come
without challenges. Here, we discussed four constraints of spatial network analysis
that need to be addressed for its further adoption in planning routines.

3.1 Data Openness and Privacy

Spatial network data are not widely accessible and consistently documented. Gener-
ally speaking, there are three commonly used data sources: private sources, crowd-
sourcing data, and the government released official records. Out of the fifty-seven
empirical studies we reviewed in section 2, thirty-three (57%) used data from private
sources, such as cell phone calls, location-based social network service, micro-
mobility traces, GPS trajectories, and social media check-in. These data have the
advantages to be fine-grained and have relatively high data quality, but are of-
ten bought one-off for research purposes. They were disproportionally applied to
study non-planar networks, such as social connections and mobility patterns (esp.
in COVID-19). Six papers (11%) collected data through crowdsourcing, including
volunteered GPS trajectories, open-sourced street networks, surveys, or collabora-
tion with public institutions. These data tend to be small and costly to collect but
more informative for specific research questions. OpenStreetMap (OSM) project as a
well-known crowdsourced geographic data platform provides detailed road networks
across the world, though the data quality may vary by region. Regarding government
released official data sources, eighteen (32%) used publicly available data such as tax
records, LODES commutes data from U.S. census, court records, street networks,
bus routes, and smart cards. The attainment of some public data (e.g., air and train
schedule) can involve time-consuming data scraping and cleaning. These public data
also skewed heavily toward planar networks (eight papers) and have very little docu-
mentation for non-planar (social) networks. In addition, these data are often offered
in aggregated formats, which is not fine-grained enough for planners’ place-based
work. The stark contrast of numbers above reveals the shortage of crowdsourced and
publicly available spatial network data, especially for mobility and relationships.
Considered the wide range of applications on urban affairs, spatial network data
should be considered a public good despite being collected through private chan-
nels. So, how can we encourage data openness to increase the accessibility of spatial
network data?

The City of Chicago provides an example of data openness through policy-
making. Starting in 2018, all ride-share companies are required by an ordinance to
send routine reports to the City of Chicago, including the origins and destinations
of trips [100]. Products like Uber Movements also help transportation planners
to monitor traffic flow and increase road safety. During the COVID-19 outbreaks,
multiple geospatial data companies (e.g., SafeGraph) also contributed free and open
POI or tract-based foot traffic data for governments, non-profits, and researchers to
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download [101]. Still, more public-private partnership models or policies need to be
developed to keep spatial network data open.

Privacy, in particular, geoprivacy, is another barrier to collect large-scale and
consistent spatial network data. This challenge is often offloaded to service vendors
to resolve. Geoprivacy refers to an individual’s rights to prevent the disclosure
of sensitive personal locations such as their home, workplace, travel trips [102].
Due to the rapid development of location-based services, information, such as users’
location records and attributes, is automatically collected or inferred from the spatial,
temporal, and thematic characteristics of the geographic information. Hence, it is
necessary to "encrypt" individual location information to protect users from being
identified.

Existing studies have proposed several potential solutions for protecting geopri-
vacy. The simplest one is to aggregate fine-resolution data to upper-level scales. It
indeed preserves user privacy but also reduces the spatial resolution of data [103].
The other commonly used method is grouping and mixing the geographic data (e.g.,
trajectory points) from k different users into k different regions and then generate
k-anonymized location information [104]. Such a method may hide the spatial infor-
mation of the input data and neglect temporal and semantic attributes. Another one
is geomasking, which blurs users’ locations by perturbation and adding noises so
that the location information can be protected with spatial patterns preserved [105].
In addition, Rao [106] proposed a deep learning method using long short-termmem-
ory (LSTM) to generate a privacy-preserving synthetic trajectory that preserves the
essential spatio-temporal attributes of the original trajectory [107]. All these studies
may enhance the privacy protection of location-related information.

3.2 Lack of Direct Policy Implications

Amajor critique toward the spatial network literature is that the zeal to reveal spatial
structures often does not lead to actual policy changes. Not many cities have changed
their administrative boundaries according to emerged borders from spatial networks.
One reason why these insights are only on the paper is due to the dynamic and un-
certain nature of spatial structures derived from multiple sources [108, 109]. These
boundaries are sensitive to the types of data collected and cannot represent the whole
population. Spatial networks are also not the only way to delineate neighborhoods.
It may have competing narratives with projects like Bostonography, which crowd-
sourced mental maps from users to represent conceptual neighborhoods [110]. Even
if we take one of the derived spatial structure as the ground truth, very few papers
went a step further to suggest a clear pathway for planners to act according to the
local conditions or provide normative discussions on the results [117]. If we have
spatial segregation in people’s activity space, should we conform to such structure
or optimize it to a healthier balance? If we know a city is at the margin of the
urban hierarchy, how can we help the city move up the ladder or achieve a mutually
beneficial state?”
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We outlined three potentials to answer the questions above. One of the missing
pieces in the existing literature is the evolution of urban network structures and
the associated socioeconomic phenomenon. Hidalgo [112] and Hausmann [113]’s
economic complexity research showed an excellent example of linking international
trade network insights into concrete economic development suggestions for develop-
ing countries. Planning literature lacks the equivalent depth of network knowledge
on the city level to direct local economic policies, though Park [114] ’s work on
labor flows and geo-industrial clusters has started to tackle this challenge. Another
way to connect network insights to policies is to evaluate the impact of policies
that change network links causally, or vice versa, the effect of networks at imple-
menting policies. Cao [115] and Liu [116] assessed the effect of the high-speed
rail network on city-to-city travel time and air traffic distribution. Such research can
help transportation planners to quantify the cost and benefits of actions that increase
connectivity. Andris [117] and Goetz [118] also pointed out how policies are often
applied to the regional level, while followed at the social networks level, such as the
successes and failures in COVID-19 interventions. Tracing policy implementation
through social networks may inform barriers or opportunities for planning actions
to take place. Lastly, a more recent piece from Shelton [120] exemplified the power
of contextualizing the spatial network structures of the inner-city to challenge the
administrative boundaries. Shelton [120] made a compelling case for the City of
Atlanta to reconsider the arrangements of Neighborhood Planning Units (a political
legacy for the neighborhoods to rally and organize for their interests in urban plan-
ning) by tracing the historical evolution of neighborhoods and comparing it to the
borders derived from big data. Validating the spatial networks insights with multiple
sources and grounding them in contexts can further move policies forward.

3.3 Lack of Civic, Communicative, and Collaborative Engagement

When spatial network analysis first became popular, there were many excitements in
the planning field to see its applications in supporting communicative and collabo-
rative planning theories [3, 121]. However, as we observed in the recent empirical
studies, very few consult or engage the information providers on interpreting and
explaining the implications. The big geospatial data in spatial network research may
produce an illusion that we have a representative picture of the whole population.
What if there is a gap between how people conceive their activity spaces and what
they show on their mobility trajectories? Furthermore, most of the network insights
also do not directly serve the interests of local communities or non-profit orga-
nizations. While we often applaud the positive impacts of connectivity on social
and economic welfare, we should not forget the duality of network edges: when
an access point is not available, an edge, such as a highway, can also negatively
affect the surrounding neighborhoods. The preferential attachment mechanism (i.e.,
rich gets richer) in scale-free networks also deepens inequality in connectivity dis-
tribution. How can communities use spatial network analysis to communicate for
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their rights and counter the privileged network discourse? How can we have more
"human-in-the-loop" interpretations of spatial network insights?

The volunteered geographic information (VGI) literature in geography may pro-
vide some interactive models for planners to engage citizens in spatial network
analysis. Participatory mapping and crowdsourcing can potentially be extended to
spatial network information, though their validity can be difficult to confirm. A
combination of recruited volunteers with GPS trackers and follow-up interviews can
also provide valuable context to explain the motivations of emerging patterns [122].
Also, to generate counter-narratives, we need to think creatively about what consti-
tutes alternative spatial network data. For instance, Andris [123] collaborated with
the NGO Big Brothers and Big Sisters of America to conceptualize mentorship pairs
in city as spatial networks and evaluated the impact of the mentoring program at
bridging spatial gaps between places which will not be connected otherwise through
commutes or demographic groups.

3.4 Difficulty to automate visualizations and integrate with GIS

Geovisualization and maps are essential in geographic information representation
and GISystems. A precise visualization helps illustrate data information intuitively
and vividly to the audience to better understand the story and turn it into knowledge.
Though researchers have integrated various spatial network data into GISystems
[124], visualizing spatial networks and interactions on maps still face conceptual
andmethodological challenges (see [125] for a comprehensive review). For example,
traditional flow maps do not display well with large-scale non-planar networks as
they can be too dense to display on a 2D space and thus result in edge cluttering. In
addition, nodes and edges in spatial networks take onmultiple attributes (e.g., density,
direction, divisions, and hierarchies of flows and the attributes of the destination
nodes), which requires more aesthetic support than just size and color in GIS.

Researchers have proposed several methods to address these challenges. A set
of algorithms have been proposed for visual simplification to reduce cluttering
based on aggregation, such as automating thresholds to filter data [126]; grouping
points that are close by or have similar connectivity into one node (i.e., graph
partitioning [127] and spatial clustering [128, 129]); bundling and summarizing
edges that are going to the same directions (i.e., edge bundling [130]); and algebraic
multigrid [131]. Studies have also explored how to represent more attributes of
networks in visualization, such as direction [132] and temporal or step-wise changes
of flows (i.e., alluvial diagram [133]). Several powerful web-based visualization
tools and packages were developed for spatial network visualization, such as deck.gl
[134] and flowmap.blue1. Compared with traditional static GIS maps, these web-
based interfaces can dynamically visualize more network attributes, such as the flow

1 https://flowmap.blue/
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directions, the contrast of in and out-degree for nodes, and all connections to one
node. All these studies may benefit spatial network-related geovisualization.

4 Conclusion: Envisioning a Collaborative Planning Model with
Spatial Networks

Planning is a process for setting goals, identifying and assessing options, and de-
veloping strategies for achieving desired goals [135]. Collaborative planning theory
further elaborates on the planning process to be an "interactive, communicative
activity," [136, p.183] that engages diverse urban stakeholders [137]. Given the
wide range of spatial networks applications, we believe that it can inform collabo-
rations across agents and regions that enrich both the rationality and humanity of
the outcomes. We proposed a framework in which spatial networks contextualize
collaborative planning theory in practices and resolve some of the challenges we
mentioned above (see Figure 1). In this idealized framework, private companies,
governments, citizens, and researchers can all contribute spatial network data as a
public good and participate in the generation of planning knowledge. The process
will be facilitated by collaborations between various urban stakeholders that aug-
ments the interpretations of spatial network insights. In the end, planners can use
network data and methods to convert planning knowledge into actions by evaluating
planning alternatives, establishing expectations of planning impacts, or providing
normative evidence to support activism. To further illustrate how different planning
stakeholders can use spatial network analysis for decision-making or activism un-
der collaborative planning framework, we generated a table of examples for each
stakeholder (see Table 1).
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Fig. 1 A collaborative planning framework with spatial networks
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Spatial Network Data Methods Example Actions
Regional Commission

Population density of cities (Nodes) and multiple
urban networks through mobility, employment his-
tory, capital investments, and social media (Edges)

Apply community detection to delineate bound-
aries for megaregions and validate the boundaries
with multiple types of networks

Propose urban clusters that can be developed into
megaregions and suggest regional planning of in-
frastructure that can support such urban system

Public Administration
Real-time mobility tracking data with LBSN ser-
vices during COVID-19

Use community detections to capture urban clus-
ters that have high risks of inter-city disease trans-
mission based on connectivity

Revisit and update a dynamic administrative
boundary for urban management and public health
control by establishing inter-regions councils

Tourism and Cultural Department
Crowdsourced tourism stop points (Nodes) and
routes (Edges) from travel agencies and locals

Convert each tourism route into a chained trip,
identify places that are most popular and most
likely to be a transfer stop, and cluster the trips
based on different themes

Develop an automated system to recommend cus-
tomized trips based on users’ preferences

Economic Planners
Economic network constructed through company
branches (Nodes) and firm collaboration records
(Edges)

Calculate the probability of growing a industry
based on connectivity to the industrial profiles from
other cities

Strategize what industries to invest and grow not
only based on a city’s endogenous resources, but
also based on the relative advantages of a city in
urban networks

Transportation Planners
Fragmented bike lane network shapefile (Nodes
and Edges)

Develop optimization algorithms to connect the
fragmented bike lanes and evaluate the costs and
benefits

Strategize where to build the next bike lane

Urban Designers and Modelers
Work-home commutes data (Nodes and Edges);
Social Media Check-in (Nodes)

Approximate the density of visits and volumes of
traffic flows in and out of a target area

Calibrate the model of passenger flow at a design
site to simulate the effect of the proposed plan

Housing and Community Planners
Survey of people’s active connections (Edges)
within and outside of the current living commu-
nities (Nodes)

Construct a residential mobility index based on the
neighborhood characteristics and people’s social
networks

Evaluate the effect ofmixed-income public housing
project on people’s social capitals and job access

Activists
Collect survey of teachers’ work-home locations
(Nodes) and commute routes (Edges)

Visualize the information as a spatial network to
show how far and scattered teachers currently live

Convince the local community to approve afford-
able housing for teachers so that they can live
nearby the schools

NGO and Social Enterprise
Locations of coffee farms (Nodes) and their pro-
duction relationships (Edges)

Interview to reveal collaborative and competitive
relationships between local coffee farms and iden-
tify critical ties

Form local coffee producers co-op networks that
improve economic and environmental resilience for
individuals

Business owners and investors
Place-based or POI-based visit data (from social
media) or LBSN services

Evaluate the sociodemographic profiles of people
that frequent the locations and their matches to the
business

Select optimal locations to open new business

Table 1 Example applications of spatial networks for planning stakeholders.

In conclusion,we reported research that applied spatial networks data andmethods
in the planning context. We found four common themes, including revealing spatial
structures, optimizing urban infrastructure, correlating network structure with eco-
nomic development, social capitals, and residential mobility, and monitoring public
health. We also discussed challenges of data openness and privacy, unclear policy
implications, lack of civic engagement, and difficulty to integrate with GIS that
impeded planners’ further adoption of spatial network analysis in daily routines.
However, we are optimistic that spatial networks can be the backbone of a collab-
orative planning framework. The hypothetical examples we provided from various
urban stakeholders’ perspectives show spatial networks’ flexibility to facilitate effi-
ciency, responsiveness, and inclusion in planning practices. Future research should
address the applications in environmental, ecological, and energy networks that are
not covered in this study.
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